94 09 06 7 v 1 1 2 Se p 19 94 Extensions of Virasoro group and Virasoro algebra by modules of tensor densities on S 1 Valentin OVSIENKO

نویسنده

  • Valentin OVSIENKO
چکیده

We classify non-trivial (non-central) extensions of the group Diff(S1) of all diffeomorphisms of the circle preserving its orientation and of the Lie algebra Vect(S1) of vector fields on S1, by the modules of tensor densities on S1. The result is: 4 non-trivial extensions of Diff(S1) and 7 non-trivial extensions of Vect(S1). Analogous results hold for the Virasoro group and the Virasoro algebra. We also classify central extensions of constructed Lie algebras C.N.R.S., Centre de Physique Théorique, Luminy-Case 907, F-13288 Marseille Cedex 9, France URA 746 /Institut de Mathématiques et d’Informatiques/, Université Claude Bernard Lyon I, 43 bd. du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ep - t h / 96 02 17 0 v 1 2 9 Fe b 19 96 Extension of the Virasoro and Neveu - Schwartz algebras and generalized Sturm - Liouville operators

We consider the universal central extension of the Lie algebra Vect(S 1)⋉C ∞ (S 1). The coadjoint representation of this Lie algebra has a natural geometric interpretation by matrix analogues of the Sturm-Liouville operators. This approach leads to new Lie superalgebras generalizing the well-known Neveu-Schwartz algebra.

متن کامل

Coxeter’s Frieze Patterns and Discretization of the Virasoro Orbit

We show that the space of classical Coxeter’s frieze patterns can be viewed as a discrete version of a coadjoint orbit of the Virasoro algebra. The canonical (cluster) (pre)symplectic form on the space of frieze patterns is a discretization of the Kirillov symplectic form. We relate a continuous version of frieze patterns to conformal metrics of constant curvature in dimension 2.

متن کامل

Partial classification of modules for Lie-algebra of diffeomorphisms of d-dimensional torus

We consider the Lie-algebra of the group of diffeomorphisms of a ddimensional torus which is also known to be the algebra of derivations on a Laurent polynomial ring A in d commuting variables denoted by DerA. The universal central extension of Der A for d = 1 is the so called Virasoro algebra. The connection between Virasoro algebra and physics is well known. See for example the book on Confor...

متن کامل

Looped Cotangent Virasoro Algebra and Non-linear Integrable Systems in Dimension 2 + 1

We consider a Lie algebra generalizing the Virasoro algebra to the case of two space variables. We study its coadjoint representation and calculate the corresponding Euler equations. In particular, we obtain a bi-Hamiltonian system that leads to an integrable non-linear partial differential equation. This equation is an analogue of the Kadomtsev–Petviashvili (of type B) equation.

متن کامل

LOGARITHMIC INTERTWINING OPERATORS AND W(2,2p − 1)-ALGEBRAS

For every p ≥ 2, we obtained an explicit construction of a family of W(2, 2p − 1)-modules, which decompose as direct sum of simple Virasoro algebra modules. Furthermore, we classified all irreducible self-dual W(2, 2p − 1)-modules, we described their internal structure, and computed their graded dimensions. In addition, we constructed certain hidden logarithmic intertwining operators among two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008